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Abstract
In the frame of a vectorial Pauli algebraic approach it is shown that the product
of two exponentials of any two-by-two linear operators can be put in a single-
exponential closed form. As a first application, a compact vectorial expression
for the characteristics (angle and axis) of the product of two R3 rotations is
established. The same mathematics can be used in a large diversity of problems
of the whole class of two-states physical systems. An exemplification in the
field of polarization optics is given.

PACS numbers: 02.30.Tb, 42.25.Ja

1. Introduction

A quite general problem, often encountered in linear algebra and its applications in physics is
that of expressing the product of two exponential operators in the form of a unique exponential
operator:

eA eB = eC, (1)

in other words of determining C = ln eA eB , where A and B are some general operators (of
the same type).

It is well known (e.g. [1]) that if the two operators at the exponents commute

[A,B] = 0, (2)

the two exponentials in equation (1) commute too and

eA eB = eB eA = eA+B. (3)

A problem which naturally arises here is what is the difference between eC = eA eB and eA+B

when A and B do not commute. Evidently, this difference depends on the commutatorial
properties of the pair of operators A, B.

1751-8113/07/4914803+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK 14803

http://dx.doi.org/10.1088/1751-8113/40/49/013
mailto:ttudor@ifin.nipne.ro
http://stacks.iop.org/JPhysA/40/14803


14804 T Tudor

A particular solution to this problem is when both the operators commute with their
commutator,

[A, [A,B]] = [B, [A,B]] = 0. (4)

In this case,

eA eB = eA+B e
1
2 [A,B] = eA+B+ 1

2 [A,B]. (5)

The general solution of the problem is given by the Baker–Campbell–Hausdorff (BCH)
formula, which expresses eA eB as an exponential of an infinite series of commutator
terms [2],

eA eB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]+ 1
12 [[A,B],B]+···. (6)

The series cannot generally be summed, explicitly, but the recursion scheme which gives
the terms of the series may, in principle, be carried out to arbitrarily high order. Weiss and
Maradudin [3] have calculated the series out to the fifth order, Eriksen [4] up to the sixth order,
while Richtmyer and Greenspan [5] have calculated it out to the 512 order by computer and
published it to the tenth order.

The, generally very complicated, exponential series of commutators are greatly reduced if
the operators A and B pertain to a low-dimensional Lie algebra, and there are some particular
cases when eA eB can be written as a closed-form single exponential [2, 6].

In the case of the linear operators defined on a unitary space of dimension two over the
field of complex numbers, i.e. in the case of the GL(2, C) operators, an exact solution to this
problem exists. However for 2 × 2 matrices the BCH formula does not always converge.
Since our concern is with applications, criteria for convergence will not be discussed in this
paper.

The core theoretical result of the paper, equations (24) and (25), has been known for a long
time. It is stated, without demonstration and in another parameterization, in the appendix of
the paper [7] by Dragt and Finn. I give here a demonstration of this result in a parameterization
which leads to a form more symmetric and, I think, better suited to a certain kind of physical
applications, namely the analysis of ‘two-state’ or ‘two-beam’ systems. A prospect for the
application of this theoretical result is opened in sections 5 and 6 of the paper.

We shall adopt here a vectorial Pauli algebraic approach, and it is expectable that it
will transpose the problem in some equations referring to the Pauli axes [8] of the involved
operators.

2. The commutator [eA, eB] in function of the commutator [A, B]

Any operator of class GL(2, C) may be expanded in the form

A = a0σ0 + a · σ, (7)

where (σ0, σ) is the Stokes vector of the Pauli matrices, a0 is a (generally complex) scalar and
a is, generally, a complex vector in C3 (see [7] and further citation herein). If we denote by m
the unit vector corresponding to a (we have denominated this unit vector as the Pauli axis of
the operator [7], and we shall call a the Pauli vector of the operator), and by µ the modulus of
this vector, equation (7) takes the form

A = a0σ0 + µm · σ. (8)

Similarly, write B in the form

B = b0σ0 + νn · σ, (9)
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Then we have

eA = ea0σ0 eµm·σ = ea0σ0(σ0 cosh µ + m · σ sinh µ), (10)

eB = eb0σ0 eνn·σ = eb0σ0(σ0 cosh ν + n · σ sinh ν) (11)

and

eA eB = e(a0+b0)σ0(σ0 cosh µ + m · σ sinh µ)(σ0 cosh ν + n · σ sinh ν)

= e(a0+b0)σ0 [(cosh µ cosh ν + m · n sinh µ sinh ν) σ0

+ (m sinh µ cosh ν + n cosh µ sinh ν) · σ + i(m × n) · σ sinh µ sinhν] , (12)

where we have used Dirac’s formula

(m · σ)(n · σ) = m · n + i(m × n) · σ. (13)

Herefrom, it is straightforward that

[eA, eB ] = 2i(m × n) · σ e(a0+b0)σ0 sinh µ sinh ν, (14)

with m and n, we stress once again, generally complex unit vectors.
On the other hand, from equations (8) and (9) we may calculate the commutator of the

operators A and B:

[A,B] = (a0σ0 + µm · σ)(b0σ0 + νn · σ) − (b0σ0 + νn · σ)(a0σ0 + µm · σ)

= 2iµν(m × n) · σ. (15)

Hence, quite generally, for the 2 × 2 operators, we have

[eA, eB ] = sinh µ sinh ν

µν
e(a0+b0)σ0 [A,B], (16)

where µ and ν are the moduli of the Pauli vectors of the operators A and B, respectively.
From equations (14) and (15) it is evident that, aside from some trivial conditions, the

operators eA and eB as well as A and B commute when their Pauli (generally complex) axes
are collinear (generally in C3):

m × n = 0 ⇔ m ≡ n ⇔ m = λn, (17)

where ≡ stands here for ‘congruent’ or ‘equivalent’ (in the sense of colinearity) and λ is
generally a complex number of modulus 1.

This is the Pauli algebraic condition for being allowed to write equation (3).
Even if in the applications to which we shall refer, the unit vectors m, n are real, these

results are valid also for complex vectors.
Finally, from equation (16) we get

eA eB = eBeA +
sinh µ sinh ν

µν
e(a0+b0)σ0 [A,B]. (18)

Now we are able to look for the concrete Pauli algebraic form of equation (1).

3. The closed-form single exponential of eA eB

If we write the Pauli expansion of C as

C = c0σ0 + γ c · σ, (19)

with c being a unit vector, the Pauli axis of C, then we have

eA eB = eC = ec0σ0 eγ c·σ = ec0σ0(σ0 cosh γ + c · σ sinh γ ), (20)
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and identifying between equations (20) and (12) we get for the Pauli elements of the operator
C:

c0 = a0 + b0, (21)

cosh γ = cosh µ cosh ν + m · n sinh µ sinh ν, (22)

c sinh γ = m sinh µ cosh ν + i(m × n) sinh µ sinh ν + n cosh µ sinh ν. (23)

In the general case (m �= n) the formulae for c and γ are not very simple but, as we shall see,
they have a high degree of symmetry and of mathematical expressivity. With equations (22)
and (23) we get

γ = arc sinh
√

cosh2 µ cosh2 ν + (1/2)m · n sinh 2µ sinh 2ν + (m · n)2 sinh2 µ sinh2 ν − 1,

(24)

c = m sinh µ cosh ν + i(m × n) sinh µ sinh ν + n cosh µ sinh ν√
cosh2 µ cosh2 ν + (1/2)m · n sinh 2µ sinh 2ν + (m · n)2 sinh2 µ sinh2 ν − 1

. (25)

Equations (24) and (25) determine exactly the Pauli elements γ , c of the operator C as
functions of the Pauli elements µ, m and ν, n of the operators A and B. This way the solution
C of equation (1) is determined. The product eA eB can be expressed as a closed-form single
exponential eC = eγ c·σ, with γ and c determined by equations (24) and (25), respectively.

It is easy to verify that√
cosh2 µ cosh2 ν + (1/2)m · n sinh 2µ sinh 2ν + (m · n)2 sinh2 µ sinh2 ν − 1

= ‖m sinh µ cosh ν + i(m × n) sinh µ sinh ν + n cosh µ sinh ν‖. (26)

Thus c is a unit vector as we have conceived it in equation (19).
On this basis, the expressions of the parameters γ , c of the operator C take a remarkably

symmetric form as function of the corresponding parameters of A and B:

γ = arc sinh‖m sinh µ cosh ν + i(m × n) sinh µ sinh ν + n cosh µ sinh ν‖, (27)

c = m sinh µ cosh ν + i(m × n) sinh µ sinh ν + n cosh µ sinh ν

‖m sinh µ cosh ν + i(m × n) sinh µ sinh ν + n cosh µ sinh ν‖ . (28)

4. Application: the product of two rotations

Let us consider now, as an application of the above-established general formulae, the classical
problem of the product of two rotations in R3. We shall multiply two rotations (given by the
corresponding unitary operators):

• one of the angle δ1 around the axis n1:

Un1(δ1) = e−i δ1
2 n1·σ, (29)

• the second of angle δ2 around the axis n2:

Un2(δ2) = e−i δ2
2 n2·σ. (30)
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The result of these two rotations is another rotation whose corresponding unitary operator
is

Un(δ) = Un2(δ2)Un1(δ1) = e−i δ
2 n·σ, (31)

and whose axis n and angle δ have to be determined.
Let us see what become our general formulae in this particular case.
The linear Pauli algebraic expansion of (the unitary operator corresponding to) the

resultant rotation is given by equation (12):

Un(δ) =
(

cos
δ2

2
cos

δ1

2
− n2 · n1 sin

δ2

2
sin

δ1

2

)
σ0

− i

(
n2 sin

δ2

2
cos

δ1

2
+ n2 × n1 sin

δ2

2
sin

δ1

2
+ n1 cos

δ2

2
sin

δ1

2

)
· σ, (32)

In what concerns the commutator of the two rotations, it is given by equation (14):
[
Un2(δ2), Un1(δ1)

] = −2i(n2 × n1) · σ sin
δ2

2
sin

δ1

2
. (33)

The characteristic elements of the resulting rotation (n, δ) in function of those of the composed
rotations (n1, δ1), (n2, δ2) are given by equations (22) and (23) or (24) and (25), or (27) and
(28).

From equation (22) we get

δ = 2arc cos

(
cos

δ2

2
cos

δ1

2
− n2 · n1 sin

δ2

2
sin

δ1

2

)
, (34)

and from equation (28),

n = n2 sin δ2
2 cos δ1

2 + (n2 × n1) sin δ2
2 sin δ1

2 + n1 cos δ2
2 sin δ1

2∥∥n2 sin δ2
2 cos δ1

2 + (n2 × n1) sin δ2
2 sin δ1

2 + n1 cos δ2
2 sin δ1

2

∥∥ . (35)

5. Application: orthogonal and non-orthogonal polarization devices

Let us put this application in some concrete physical terms. We shall consider a problem
widely encountered in the theory of the polarization devices. Generally, a polarization
device or a polarization arrangement is composed by a series of elementary (‘canonical’)
devices: homogeneous polarizers, retarders, rotators [9–11]. The 2 × 2 operators (in the
Jones formalism) of these canonical devices are normal operators: their eigenvectors are
orthogonal. Therefore and in this sense, the canonical devices are called also orthogonal
devices [12].

The canonical retarders are represented by unitary operators.
Apart from an unessential phase factor, the unitary operators have the Pauli algebraic

form [8],

Un(δ) = e−i δ
2 n·σ = σ0 cos

δ

2
− in · σ sin

δ

2
. (36)

The canonical, homogeneous polarizers are represented by Hermitian operators. Again we can
let aside an unessential real factor, corresponding to the isotropic transmission of the polarizer.
The essential part of the operator of a homogeneous polarizer is constituted by a unimodular
Hermitian operator.

The Pauli algebraic expansion of a unimodular Hermitian (boost, squeeze) operator is [8]

Hm(η) = e
η

2 m·σ = σ0 cosh
η

2
+ m · σ sinh

η

2
. (37)
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In the representations (36) and (37) of the unitary and the unimodular Hermitian operators,
both the unit vectors n and m are real. They are the Poincaré axes of the two operators. The
squeeze may be conceived also as an imaginary rotation [p 93, 13] of δ ∈ iR around a real
axis, or as a real rotation around an imaginary axis n ∈ iR3 [p 189, 14].

Both the operators (36) and (37) are evidently normal operators. They pertain to the
special linear group, the ‘unimodular group’ [p 297, 1] SL(2, C): the unitary operators are
implicitly unimodular, the Hermitian operators (37) by the restriction we have imposed.

A series of orthogonal devices (each characterized by a normal operator) gives rise,
generally to a non-orthogonal device (non-orthogonal eigenvectors, non-normal operator)
[15–17]. But any operator (normal or non-normal) may be expressed, by the polar
decomposition, as the product of a Hermitian operator and a unitary operator [15, 18, 19].
Particularly by means of a various pairs of operators (36), (37) we can build up the whole
group SL(2, C):

L2,C = Hm(η)Un(δ) = e
η

2 m·σ e−i δ
2 n · σ. (38)

Referring to our problem, equation (38) means that any composed polarization device can be
reduced to (can be conceived as) a succession of a polarizer and a retarder (both generally
elliptic). In this way, its birefringent and dichroic properties can be separated.

We have used here the right-hand polar decomposition. A left-hand decomposition may
be equally used. In general, these two decompositions are different, i.e. the two factors in
equation (38) do not commute.

Let us first to expand the general Pauli expression (38) of a SL(2, C) operator, by means
of (36) and (37):

L2,C =
(
σ0 cosh

η

2
+ m · σ sinh

η

2

) (
σ0 cos

δ

2
− in · σ sin

δ

2

)

= σ0 cosh
η

2
cos

δ

2
+

(
m sinh

η

2
cos

δ

2
− in cosh

η

2
sin

δ

2

)
· σ

− im · nσ0 sinh
η

2
sin

δ

2
+ (m × n) · σ sinh

η

2
sin

δ

2

=
(

cosh
η

2
cos

δ

2
− in · m sinh

η

2
sin

δ

2

)
σ0

+

[
m sinh

η

2
cos

δ

2
− in cosh

η

2
sin

δ

2
+ (m × n) sinh

η

2
sin

δ

2

]
· σ. (39)

This is the general Pauli algebraic linear expansion of a SL(2, C) operator.
Now we will analyze in what conditions the SL(2, C) operator becomes a normal one.

For our polarization problem this comes to establish in what conditions the composed device
is orthogonal.

There are some possibilities to approach this problem, corresponding to the various
characteristic features adopted for defining the normal operators.

One of the properties of the normal operators is that their right-hand and left-hand polar
decompositions coincide. In other words, the polar decomposition of a normal operator is
unique and invertible (e.g. [p 103, 1]). We shall make use of this property in our approach.

Working out similarly the left-hand polar decomposition corresponding to (38), it is
straightforward that the commutator of the two polar factors of the L2,C operator (38) is

[Hm(η), Un(δ)] = 2m × n sinh
η

2
sin

δ

2
. (40)

Avoiding the trivial cases η = 0, δ = 0, this commutator vanishes if and only if

m × n = 0, (41)
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i.e. if the Poincaré axes of the ‘operatorial modulus’ and of the ‘phase factor’ of the operator
L2,C , given by equation (38) are parallel (coincide):

m = n. (42)

Hence the expansion (39) of a SL(2, C) operator reduces for normal SL(2, C) operators to

N2,C =
(

cosh
η

2
cos

δ

2
− i sinh

η

2
sin

δ

2

)
σ0 +

(
sinh

η

2
cos

δ

2
− i cosh

η

2
sin

δ

2

)
n · σ. (43)

The last expression can be readily led to a single-exponential form

N2,C = e(
η

2 −i δ
2 )n·σ , (44)

where n is a real unit vector.
Referring to the problem of polarization devices, the Poincaré axes of dichroism and of

birefringence for an orthogonal device coincide, equation (44), whereas for a non-orthogonal
device they are different, equation (38).

6. Conclusions

The problem of expressing the product of two exponential operators in the form of a unique
exponential operator was solved in quite general terms by the BCH formula, which gives
this product as an exponential of an infinite series of commutators terms. The series cannot
generally be summed explicitly, but the recursion scheme which gives the terms of the series
may, in principle, be carried out to arbitrary high order.

There are some particular cases when eA eB can be written as a closed-form single
exponential eC . Probably, the most important such a case is when A and B are 2 × 2 linear
operators over the field of real or complex numbers, because this case refers to the mathematics
supporting all the problems of ‘two-level’ or ‘two-beams’ physical systems [20].

In this paper, we have established the general solution of the problem for any 2 × 2
linear operator. The vectorial Pauli algebraic approach is the most economic and leads to
very compact (vectorial) and symmetric results for the parameter γ and the Pauli axis c of
the operator C = ln eA eB , as function of the parameters µ, ν and the Pauli axes m, n of the
operators A and B.

We have exemplified the results for two widely encountered applications.
One of them is the classical problem of compounding two rotations. We have given

the rotations by their corresponding unitary operators (hence in a spinorial representation).
Equations (34) and (35) giving the elements of the resulting rotation (the rotation angle and the
axis of rotation) as function of those of the composed rotations are very compact (vectorial),
symmetric and physically expressive in comparison to the corresponding results given in the
literature of the domain.

As a second example, we have chosen an important up-to-date problem of the polarization
theory: the relationship between the elements of the birefringent and dichroic parts of a general
polarization device constituted generally by a sandwich of birefringent, chiral and dichroic
components. These two parts are described by the unitary and Hermitian polar factors of the
operator of the composed device, respectively. In this case, unlike the previous one, the Pauli
axis of the operator C is generally a complex vector. We have established also the condition
under which the polarization sandwich is an orthogonal one: in this particular case the Pauli
axis of the operator may be reduced to a real vector, but, in general, the parameter γ is complex
(the angle of rotation is complex, i.e. the operator of the device corresponds to a rotation and
a boost).
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This mathematics sustains a large variety of physical problems of the so-called ‘two-state’
or ‘two-beam’ systems. Among them the very known are the spin 1/2 and the light polarization
systems, for which the corresponding Hilbert state space is a bi-dimensional one. But in the
last years comes to light the fact that many others physically and apparently different systems
(geometric-optical [21], interferometric [22], laser [23], multilayer [24], squeeze states of
light [25]) are in fact of the same kind and have a same underlying mathematics. The above-
established results may be equally used in the pure-operatorial (‘non-matrix’) approaches to
all these problems.
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